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Abstract. The full set of polynomial solutions of the nested Bethe ansatz is constructed for the
case of the A2 rational spin chain. The structure and properties of these associated solutions are
more various than the case of the usual XXX (A1) spin chain but their role is similar.

1. Introduction

In our previous paper [1] we considered the famous Baxter TQ equations [5] for the simplest
cases of the XXX and XXZ spin chains. In particular, we showed that for each solution Q(λ)

of the Bethe equations there exists an associated solution P(λ) that corresponds to the same
eigenvalue T (λ) of the transfer matrix. The associated solution does not define a ‘physical’
Bethe state; however, it is found to be useful in its own right.

The polynomials Q(λ) and P(λ) form a full set of solutions of the TQ equation

T (λ)Q(λ) = (λ − i/2)NQ(λ + i) + (λ + i/2)NQ(λ − i) (1)

which may be considered to be a second-order finite-difference equation with respect to Q(λ).
As for second-order differential equations we can express the coefficients of (1) via its solutions
Q and P as

P(λ + i/2)Q(λ − i/2) − P(λ − i/2)Q(λ + i/2) = λN (2)

T (λ) = P(λ + i)Q(λ − i) − P(λ − i)Q(λ + i). (3)

It is remarkable that the set of polynomial solutions of (2) reproduce the spectrum T (λ) via (3).
The construction above corresponds to the case when the fundamental set of quantum

operators belongs to the algebra A1 (and its deformations). In this paper we take the first
step in the generalization of our approach to the algebras An. For the sake of simplicity
we limit ourselves to the isotropic A2 spin chain, setting aside its deformations for future
publications. We show that each solution of the nested Bethe ansatz equations is associated with
five additional solutions that correspond to the same eigenvalue of the transfer matrix. Also, we
show that the third-order finite-difference equation, which is an analogue of Baxter’s equation
for the case of A2, has a full set of polynomial solutions Q, P and R. The corresponding
‘Wronskian’ has the form∣∣∣∣∣

Q(λ − i) Q(λ) Q(λ + i)
P (λ − i) P (λ) P (λ + i)
R(λ − i) R(λ) R(λ + i)

∣∣∣∣∣ = λN. (4)
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The polynomial solutions of this equation are the components of the full spectrum of the A2

transfer matrix. For example, the eigenvalues of the transfer matrices corresponding to the
two fundamental representations are given by∣∣∣∣∣

Q(λ − 3i/2) Q(λ ± i/2) Q(λ + 3i/2)

P (λ − 3i/2) P (λ ± i/2) P (λ + 3i/2)

R(λ − 3i/2) R(λ ± i/2) R(λ + 3i/2)

∣∣∣∣∣ = T ±(λ). (5)

These equations replace (2) and (3) for the case of A2.

2. Various formulations of the nested Bethe ansatz

The exact formulation of the model can be found in for example [2]. Diagonalization of the
transfer matrix and corresponding Hamiltonian has been accomplished with the help of the
so-called nested Bethe ansatz [3], which can be constructed in the framework of QISM (see
e.g. [4]).

Let us recall the general setup of the nested Bethe ansatz equations for the case of an A2

spin chain Take N to be the length of the chain and introduce non-negative integers n1 and n2

that satisfy

n1 � N/3 n2 � 2N/3 2n1 � n2. (6)

The corresponding Bethe state is defined by n1 + n2 parameters, which we denote by

λ
(1)
j (j = 1, 2, . . . , n1) λ

(2)
k (k = 1, 2, . . . , n2). (7)

The equations for λ
(1)
j and λ

(2)
k are

n1∏
j ′=1

λ
(1)
j − λ

(1)
j ′ + i

λ
(1)
j − λ

(1)
j ′ − i

×
n2∏

k′=1

λ
(1)
j − λ

(2)
k′ − i

2

λ
(1)
j − λ

(2)
k′ + i

2

= −1 (j = 1, 2, . . . , n1)

n1∏
j ′=1

λ
(2)
k − λ

(1)
j ′ − i

2

λ
(2)
k − λ

(1)
j ′ + i

2

×
n2∏

k′=1

λ
(2)
k − λ

(2)
k′ + i

λ
(2)
k − λ

(2)
k′ − i

= −
(

λ
(2)
k + i

2

λ
(2)
k − i

2

)N

(k = 1, 2, . . . , n2).

(8)

Let us define a pair of polynomials Q1(λ) and Q2(λ) of degrees n1 and n2 respectively, by

Q1(λ) =
n1∏

j ′=1

(λ − λ
(1)
j ′ ) Q2(λ) =

n2∏
k′=1

(λ − λ
(2)
k′ ). (9)

Making use of these polynomials we can rewrite (8) as

Q1(λ
(1)
j + i)Q2

(
λ

(1)
j − i

2

)
+ Q1(λ

(1)
j − i)Q2

(
λ

(1)
j +

i

2

)
= 0 (j = 1, 2, . . . , n1)(

λ
(2)
k +

i

2

)N

Q1

(
λ

(2)
k +

i

2

)
Q2(λ

(2)
k − i) +

(
λ

(2)
k − i

2

)N

Q1

(
λ

(2)
k − i

2

)
×Q2(λ

(2)
k + i) = 0 (k = 1, 2, . . . , n2).

(10)

If all the roots of Q1(λ) and Q2(λ) are simple then (10) implies

Q2

(
λ +

i

2

)
Q1(λ − i) + Q2

(
λ − i

2

)
Q1(λ + i) = T2(λ)Q1(λ) (11)

(
λ +

i

2

)N

Q1

(
λ +

i

2

)
Q2(λ − i) +

(
λ − i

2

)N

Q1

(
λ − i

2

)
Q2(λ + i) = T1(λ)Q2(λ) (12)

where T1(λ) and T2(λ) are new polynomials, the meaning of which will be clarified later.
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The eigenvalues T (λ) of the transfer matrix enter the game via the following construction.
Shifting the argument in (11) by ± i

2 and combining the result with (12), we obtain{
T1(λ) +

(
λ ± i

2

)N

Q1

(
λ ∓ 3i

2

)}
Q2(λ)

=
{(

λ ± i

2

)N

T2

(
λ ∓ i

2

)
+

(
λ ∓ i

2

)N

Q2(λ ± i)

}
Q1

(
λ ∓ i

2

)
. (13)

Suppose now that Q2(λ) and Q1(λ ± i
2 ) are mutually simple, i.e. have no common roots.

Then (13) implies the following important formulae:

T1(λ) +

(
λ ± i

2

)N

Q1

(
λ ∓ 3i

2

)
= T ±(λ)Q1

(
λ ∓ i

2

)
(

λ ± i

2

)N

T2

(
λ ∓ i

2

)
+

(
λ ∓ i

2

)N

Q2(λ ± i)} = T ±(λ)Q2(λ)

(14)

where T ±(λ) are polynomials of degree N , corresponding to eigenvalues of the transfer
matrices associated with the adjoint fundamental representations of the A2 auxiliary space.

We can eliminate T1(λ) and T2(λ) by using (14), to obtain(
λ +

i

2

)N

Q1

(
λ − 3i

2

)
− T +(λ)Q1

(
λ − i

2

)

+T −(λ)Q1

(
λ +

i

2

)
−
(

λ − i

2

)N

Q1

(
λ +

3i

2

)
= 0 (15)

λN(λ + i)NQ2

(
λ − 3i

2

)
− (λ + i)NT −

(
λ − i

2

)
Q2

(
λ − i

2

)

+(λ − i)NT +

(
λ +

i

2

)
Q2

(
λ +

i

2

)
− λN(λ − i)NQ2

(
λ +

3i

2

)
= 0. (16)

These equations, which we shall encounter again later on, can be solved for T ±(λ)

T ±
(

λ ± i

2

)
Q1(λ)Q2

(
λ ± i

2

)
= λNQ1(λ)Q2

(
λ ± 3i

2

)

+(λ ± i)N
{
Q1(λ + i)Q2

(
λ − i

2

)
+ Q1(λ − i)Q2

(
λ +

i

2

)}
. (17)

In contrast with (11), (12), these equations are homogeneous with respect to Q1 and Q2 and
do not contain auxiliary polynomials T1 and T2. Also, (17) is equivalent to (11), (12) since the
rhs of (17) divides Q1(λ) and Q2(λ ± i

2 )) according to (11), (12).

3. Associated solutions of the ‘nested’ Bethe ansatz

Let us denote the system (11), (12) by

{Q1, Q2; T1, T2}. (18)

The two components of (18) are each a kind of TQ equation [5] for some inhomogeneous XXX
spin chain. For example (11) may be considered as the TQ equation for a chain of length n2

with inhomogeneities defined by the roots of Q2(λ). According to [1] there exists a polynomial
P1(λ) of degree n2 − n1 + 1, which together with Q2(λ) satisfies

Q2

(
λ − i

2

)
P1(λ + i) + Q2

(
λ +

i

2

)
P1(λ − i) = T2(λ)P1(λ). (19)
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We also have that Q2 and T2, which play the role of coefficients in (11), may be expressed in
terms of two independent solutions Q1 and P1 as

Q2(λ) = P1

(
λ +

i

2

)
Q1

(
λ − i

2

)
− P1

(
λ − i

2

)
Q1

(
λ +

i

2

)
T2(λ) = P1(λ + i)Q1(λ − i) − P1(λ − i)Q1(λ + i).

(20)

Equation (12) may also be considered as a TQ equation but for a spin chain of length N + n1.
Now polynomial λNQ1(λ) serves as an inhomogeneity. Again, according to [1] the second
solution P2(λ) is a polynomial of degree N + n1 − n2 + 1 and we have(

λ − i

2

)N

Q1

(
λ − i

2

)
P2(λ + i) +

(
λ +

i

2

)N

Q1

(
λ +

i

2

)
P2(λ − i) = T1(λ)P2(λ). (21)

A construction similar to (20) yields

λNQ1(λ) = P2

(
λ +

i

2

)
Q2

(
λ − i

2

)
− P2

(
λ − i

2

)
Q2

(
λ +

i

2

)
T1(λ) = P2(λ + i)Q2(λ − i) − P2(λ − i)Q2(λ + i).

(22)

Combining the first equation of (20) with that of (22) and excluding Q2 we obtain the factorized
equation

Q1(λ)

{
λN + P2

(
λ − i

2

)
P1(λ + i) + P2

(
λ +

i

2

)
P1(λ − i)

}

= P1(λ)

{
P2

(
λ − i

2

)
Q1(λ + i) + P2

(
λ +

i

2

)
Q1(λ − i)

}
. (23)

Suppose Q1(λ) and P1(λ) are mutually simple (this is equivalent to the mutual simplicity of
Q2(λ) and Q1(λ ± i

2 )). Then there exists a polynomial T̃2(λ) satisfying

P2

(
λ +

i

2

)
Q1(λ − i) + P2

(
λ − i

2

)
Q1(λ + i) = T̃2(λ)Q1(λ)

P2

(
λ +

i

2

)
P1(λ − i) + P2

(
λ − i

2

)
P1(λ + i) + λN = T̃2(λ)P1(λ).

(24)

Remarkably (21) and the first equation of (24) form a new pair of equations for the nested
Bethe ansatz, which in our notation can be written as {Q1, P2; T1, T̃2}. Note that according to
the first equation of system (14), this pair corresponds to the same eigenvalues of the transfer
matrices T ±(λ) as in the case of {Q1, Q2; T1, T2}.

Repeating the above procedure, but this time excluding Q1, we arrive at(
λ +

i

2

)N

P1

(
λ +

i

2

)
Q2(λ − i) +

(
λ − i

2

)N

P1

(
λ − i

2

)
Q2(λ + i) = T̃1(λ)Q2(λ)

(
λ +

i

2

)N

P1

(
λ +

i

2

)
P2(λ − i) +

(
λ − i

2

)N

P1

(
λ − i

2

)
P2(λ + i)

+

(
λ − i

2

)N (
λ +

i

2

)N

= T̃1(λ)P2(λ)

(25)

which is the system {P1, Q2; T̃1, T2}. We may summarize this section in the following
proposition.

Proposition 1. (On the association between solutions of the nested Bethe ansatz equations.)
If we have solution {Q1, Q2; T1, T2} of the Bethe equations (11), (12) and the degrees of

the polynomials are (n1, n2; N + n1, n2) respectively, then there exists a pair of associated
solutions {Q1, P2; T1, T̃2} and {P1, Q2; T̃1, T2} for which the degrees are (n1, N + n1 − n2 +
1; N + n1, N + n1 − n2 + 1) and (n2 − n1 + 1, n2; N + n2 − n1 + 1, n2).
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4. The family of solutions of the nested Bethe ansatz equations

Each of the two associated solutions {Q1, P2; T1, T̃2} and {P1, Q2; T̃1, T2} can be considered the
result of two operations F1 and F2 respectively acting on the initial solution {Q1, Q2; T1, T2},
i.e.

F1{Q1, Q2; T1, T2} = {P1, Q2; T̃1, T2}
F2{Q1, Q2; T1, T2} = {Q1, P2; T1, T̃2}.

(26)

One may obtain the impression that there may possibly exist an infinite set of associated
solutions. However, below we find that F1 and F2 form a finite group, thus guaranteeing a
finite number of associated solutions.

Firstly, let us remark that F1 and F2 are involutions

F2
1 = F2

2 = I. (27)

Next, we have that the products F2F1, F1F2F1, . . . etc, form a finite set because it will be
shown that F1 and F2 satisfy the Artin relation

F1F2F1 = F2F1F2. (28)

This relation can be diagrammatically represented as

{Q1, Q2; T1, T2}
F1 ↙ F2 ↘↘
{P1, Q2; T̃1, T2} {Q1, P2; T1, T̃2}
⇓ F2 F1 ↓ (29)

{P1, R2; T̃1, T
′

2} {R1, P2; T ′
1, T̃2}

F1 ↘ F2 ↙↙
{R1, R2; T ′

1, T
′

2} .

To prove this statement let us recall that the T ±(λ) defined in (14) are invariant under the action
of F1 and F2. Each of these operations does not change one of the two pairs Qi, Ti and due
to (14) it is sufficient for the conservation of T ±(λ).

Now let us consider equations (15), (16) from the first section. These equations may be
considered as linear homogeneous finite-difference equations of the third order for polynomials
Q1 and Q2. The invariants T ±(λ) play the role of coefficients. Each has three linearly
independent solutions Q1, P1, R1, and Q2, P2, R2, respectively. If (28) is not valid, i.e. the
chain of solutions (29) is longer, then we should obtain more than three solutions to each of
the equations (15), (16), which is impossible.

5. Concluding remarks

In our previous paper [1] we considered two fundamental polynomial solutions to Baxter’s
TQ equation. These solutions may be considered as fundamental objects of the integrable
A1 spin chain model. They give rise to all possible fusion relations for the transfer matrices
corresponding to different spins in the auxiliary space and the transfer matrices themselves
can be expressed in terms of these polynomial solutions.

For the case of the A2 spin chain we expect that the six polynomial solutions (29) play the
same role. Indeed, let us recall that the polynomials Q1, P1 and R1 are the solutions of (15):
Q1(λ − 3i

2 ) Q1(λ − i
2 ) Q1(λ + i

2 ) Q1(λ + 3i
2 )

P1(λ − 3i
2 ) P1(λ − i

2 ) P1(λ + i
2 ) P1(λ + 3i

2 )

R1(λ − 3i
2 ) R1(λ − i

2 ) R1(λ + i
2 ) R1(λ + 3i

2 )






(λ + i
2 )N

−T +(λ)

T −(λ)

−(λ − i
2 )N


 = 0. (30)
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Table 1.

Number Q(λ) P (λ) R(λ)

1 1 λ λ5 +
5

3
λ3

2 1 λ2 +
λ√
3

λ4 − 2λ3

√
3

−
√

3λ

3 1 λ2 − λ√
3

λ4 +
2λ3

√
3

+
√

3λ

4 λ λ2 +
1

3
λ3

Excluding T ±(λ) from this system we obtain the following equation:∣∣∣∣∣
Q1(λ − i) Q1(λ) Q1(λ + i)
P1(λ − i) P1(λ) P1(λ + i)
R1(λ − i) R1(λ) R1(λ + i)

∣∣∣∣∣ = λN. (31)

This equation is the analogue of the fundamental ‘Wronskian’ (16) from [1]. As in the case of
A1, (31) can be considered as the starting point for the construction of polynomials Q1, P1, R1

and consequently the transfer matrices T ±(λ):∣∣∣∣∣
Q1(λ − 3i/2) Q1(λ ± i/2) Q1(λ + 3i/2)

P1(λ − 3i/2) P1(λ ± i/2) P1(λ + 3i/2)

R1(λ − 3i/2) R1(λ ± i/2) R1(λ + 3i/2)

∣∣∣∣∣ = T ±(λ). (32)

Consider, for example, the case of a three-site chain, i.e. N = 3. The full set of polynomial
solutions of (31) in this case is shown in table 1.

The four solutions given in table 1 correspond to four irreducible representations which
enter the decomposition of the product of N = 3 fundamental representations

3 × 3 × 3 = 1 + 8 + 8 + 10. (33)

Note that we can express in terms of these polynomials not only the T ±(λ) which correspond
to the fundamental representation in auxiliary space, but also the transfer matrices for any other
representation of A2.

Similar relations exist also for the polynomials Q2, P2, R2. Taking into account the first
equation of (20) one can establish that these relations are not independent.

In [6] the An case of nested Bethe ansatz equations was considered using analogues of
Baxter’s TQ equations. However, in their approach the ‘regularization’ by means of an ‘external
magnetic field’ is essential and it is not known how to remove this regularization. At present
we are therefore unable to compare our results.
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